Management and QoS in Distributed Systems

N. Cottin, O.Baala, J. Gaber and M. Wack
Département Génie Informatique
Université de Technologie de Belfort-Montbéliard
France

Abstract Recent emerging of advanced net-
working technologies (IPv6, ATM, FastEthernet)
together with the development of Internet technolo-
gies and distributed computing such as World Wide
Web, Java and CORBA have the goal of offering
heterogeneous services to users across various ge-
ographical and network boundaries. Consequently,
many innovations in developing and adopting such
emerged technologies are needed to guarantee the
Quality of Service (QoS) in real-time distributed
applications. An environment called Distributed
Objects Management Protocol (DOMP) is defined
to supervise and manage real-time distributed ap-
plications in order to improve their QoS.

Keywords: QoS, Real-time applications, SNMP,
Data Mining, CORBA, Java.

1 Introduction

Customers nowadays not only ask for applica-
tions which functionally respond to their needs
but also which provide a high Quality of Ser-
vice level during transactions. The evolution
of advanced communications [1] and comput-
ing technologies [2] comes up with new chal-
lenges. The first challenge is the management
of large networks while not imposing an ex-
cessive overhead on network resources to en-
able flexible, scalable and robust operations.
The second challenge is to effectively exploit
the emerging communications and computing
technologies to improve the quality of services
in real-time distributed applications. To mea-
sure the Quality of Service, the Distributed
Objects Management Protocol (DOMP) col-

lects relevant information during the execution
of the distributed application. Collected in-
formation concern the distributed application
itself and the underlying network. These mea-
sures are exploited to maintain or improve the

QoS.

Anatomy of a distributed application

Distributed computing can be seen as break-
ing down an application into components that
can be distributed on a network of computers,
yet still work together to do cooperative tasks.
Higher-level services are needed to achieve a
good performance . Here are a few of the
more common motivations for supervising dis-
tributed applications :

e Large problems are broken into smaller
pieces spread over the network. The nodes
of the network cooperate to accomplish
the application executions. Each node
initially has a local view of the network.
To enlarge their view of the network, the
nodes need a distributed protocol to ac-
complish this network supervision service.

e Greedy tasks would be better assigned to
the powerful processing units of the net-
work. Within a distributed environment,
we want to avoid the situation where a
task is a slave of the slowest, most heavily
loaded unit in the system.

e For systems that need fault-tolerance, a
machine crash or a communication fail-
ure must not affect the correct function-
ing of the system. Redundant processing



on multiple networked computers can be
used : when a machine goes down, the job
can still carry on.

In this paper, we outline our effort on build-
ing an observation tool that collects remote
data on objects spread over the network in or-
der to improve the Quality of Service. We de-
fine the Quality of Service at two levels. The
reliability at the application level where the
application must guarantee a correct behavior
with respect to its specification. The robust-
ness at the network level where the network
must guarantee the communications even in
case of failure occurrences.

The rest of the paper is organized as fol-
lows : in the first section, we describe the dis-
tributed object management protocol architec-
ture. In the second section, we give a detailed
overview of the relevant information processed
by the distributed object management proto-
col. In the third section, we describe the in-
ternal functioning of the protocol and present
some implementation features. We finally con-
clude by pointing out future work directions.

2 The Distributed Ob-
jects Management Protocol
(DOMP)

The most widespread technology for develop-
ing distributed applications is Common Ob-
ject Request Broker Architecture (CORBA)
defined by the OMG [3]. CORBA is an emerg-
ing standard of distributed object technology
providing the interconnection network between
distributed objects. It enables multiple clients
and servers (commonly designed as objects)
to communicate locally or remotely, through
a LAN or the Internet.

An agent-based architecture for dynamic
resource management, called Hector [5], un-
der development at Mississippi State Univer-
sity, is designed using MPI to provide the in-
frastructure to control parallel programs dur-
ing their execution and monitor their per-
formance by running in a distributed and

Our research is based
on the Simple Network Management Protocol
(SNMP) [4] extended to objects management.
The Distributed Objects Management Proto-
col DOMP integrates objects management and
network supervision.

centralized manner.

DOMP architecture

This protocol defines the relevant information
to collect from the objects and the network.
The aim is to report information, perform
statistics and send commands to the nodes.
Distributed objects created by an application
are running on different nodes (e.g., comput-
ers) of the network. They call each other to
handle a request and perform a service. The
protocol is in charge of gathering and display-
ing information from the objects, the nodes
and the network. DOMP performs the follow-
ing tasks:

e Gathering loading information. For exam-
ple, in order to be informed which ma-
chines are the most available to run jobs.

e Processing collected information. The
Optimizer Engine (OE), based on a Data
Mining system, uses the collected infor-
mation to make optimization decisions at
run-time. For example, migration notifi-
cation can be sent to some objects held
by a machine becoming busy or to objects
that communicate at high rate.

e Displaying performance measurements.

3 Relevant information de-

scription

In this section, we define the relevant informa-
tion to be collected from objects. The most
important is the frequency of objects invoca-
tions. An Object Invocation History (OIH) is
associated with each object to keep track of
the invocation on that object. Based on the
OIH knowledge, we determine whether objects
are communicating at high rate. In this case,



migration indication is sent to the involved ob-
jects.

DOMP supervises the local resources con-
sumed by each object. An Object List Re-
sources (OLR) is associated with each object.
This OLR contains the local machine resources
of the object such as the CPU-time and mem-
ory needed to process the object . So we can
determine among the objects those who are the
most CPU-time and/or memory consumers.

A list, called Object Thrown Exception
(OTE), is associated with each object. OTE
contains the exceptions thrown by the object.
The OTE length determines the object level of
reliability: the longer is the OTE list, the less
reliable is the object.

Using these criteria, we can classify all the
objects in order to make decisions that improve
the Quality of Service. We also define the rel-
evant information regarding the network. The
node availability (NAV) is a parameter that
indicates if a machine is down. In this case,
all the objects on this machine are no more
reachable. To know the objects in concern,
we dispose of a table that contains the objects
localization. Another important parameter is
the Node Transfer Rates (NTR) on each node
of the network involved in objects invocations.
In addition, on each node, the following infor-
mation are considered such as the CPU power,
the load percentages (CPL), the percentage of
global memory usage (GMU) and its failures
frequency (statistics per minute) or NFF.

Implementation Features

An implementation of DOMP called OMENS
(Object Manager, Environment and Network
Supervisor) is being developed using Java and
CORBA. The DOMP runtime environment,
under development, is designed in the follow-
ing manner. Declared objects to be observed
have an interface that is in charge of sending
messages to the DOMP manager according to
the relevant information described in the pre-
vious section. For example, the objects invo-
cation counts or the CPU time being spent.
In our implementation of the DOMP proto-

col, called OMENS, the information is gath-
ered from CORBA-based objects only. The
network area is composed of a finite number
of known machines.

An agent (i.e., a DOMP daemon) is running
on each computer. The OMENS agent is in
charge of collecting the local objects informa-
tion. The OMENS server stores into a repos-
itory the objects information provided by the
OMENS agents. A component of the OMENS
server, the Optimizer Engine (OE), uses the
repository to perform statistics and figures out
optimizing decisions regarding to the QoS cri-
teria. The OMENS client can also display the
statistics sent by the OMENS server.

4 Conclusion

The ultimate goal of the DOMP is to guaran-
tee the QoS of real-time applications when ex-
ecuted on a distributed network. DOMP pro-
vides a dynamic runtime environment that en-
ables applications to be adapted to the vary-
ing network resources and optimize their exe-
cution. Our prototype is under development.
We are currently working on the formal state-
ment of the DOMP protocol.

References

[1] James E. Goldman. Applied data commu-
nications. John Wiley & sons Inc, 1995.

[2] Jim Farley. Java distributed computing.
O’Reilly ed. 1998.

[3] R.Orfali, D.Harkey and J.Edwards. The es-
sential Distributed objects guide. John Wi-
ley & sons Inc. 1996.

[4] D. Zeltserman. A practical guide to SN-
MPv8 and network management. Prentice
Hall series in computer networking and dis-
tributed systems, 1999.

[5] S. H. Russ, K. Reece, J. Robinson, B. Mey-
ers, R. Rajan, L. Rajagopalan and C. H.
Tan. Hector:An Agent-Based Architecture



for Dynamic Resource Management. IEEE
Concurrency, p47-55, April-June 1999.

H. Ma and S. T. Tan. Dynamic Mo-
bile Agent Based Distributed Network Man-
agement Using Internet Technology and
CORBA. IEEE International Conference
on Systems, Man, and Cybernetcis, Tokyo,
Japan,1999.



